Question Q1.24

Show that, no matter what $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ are, $\overrightarrow{\boldsymbol{A}} \cdot(\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}})=0$. (Hint: Do not look for an elaborate mathematical proof. Rather look at the definition of the direction of the cross product.)

Solution

$\mathbf{A} \times \mathbf{B}$ is a vector that is perpendicular to \mathbf{A}. Therefore, the dot product of $\mathbf{A} \times \mathbf{B}$ and \mathbf{A} is zero.

$$
\mathbf{A} \cdot(\mathbf{A} \times \mathbf{B})=A|\mathbf{A} \times \mathbf{B}| \underbrace{\cos 90^{\circ}}_{=0}=0
$$

