Question Q1.24

Show that, no matter what \overrightarrow{A} and \overrightarrow{B} are, $\overrightarrow{A} \cdot (\overrightarrow{A} \times \overrightarrow{B}) = 0$. (*Hint:* Do not look for an elaborate mathematical proof. Rather look at the definition of the direction of the cross product.)

Solution

 $\mathbf{A} \times \mathbf{B}$ is a vector that is perpendicular to \mathbf{A} . Therefore, the dot product of $\mathbf{A} \times \mathbf{B}$ and \mathbf{A} is zero.

$$\mathbf{A} \cdot (\mathbf{A} \times \mathbf{B}) = A | \mathbf{A} \times \mathbf{B} | \underbrace{\cos 90^{\circ}}_{= 0} = 0$$